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Periodically driven linear system with multiplicative colored noise
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A periodically driven linear system subject to multiplicative correlated noise is considered. It has been
argued recently by several authors that such a simple system exhibits stochastic resonance. By introducing a
general type of composite stochastic process, bridging two previously considered limiting cases of dichoto-
mous and Gaussian noise, it is proved that, indeed, the amplitude of the average of the driven linear process at
long times shows a pronounced maximum both as a function of the noise strength and as a function of the
autocorrelation time. However, this kind of stochastic resonant behavior can be experimentally observable only
in a special case where the initial phase of the external forcing is somehow fixed. Additional averaging over the
uniform distribution of the initial random phase, inherent in most physical systems, leads to that the periodic
output vanishes identically at long times. Moreover, the system response is typically defined in terms of the
power spectrum rather than the amplitude of the average. The output signal given by the spectral density
corresponding to the frequency of the external forcing is calculated via the long-time phase-averaged correla-
tion function. It appears that the output signal simply diverges upon approaching the second moment instability
point with increasing noise strength. No stochastic resonance is observed for any parameter settings. Interest-
ingly, the resonancelike behavior of the system response as a function of the autocorrelation time is retained.
@S1063-651X~98!12906-9#

PACS number~s!: 02.50.Ey, 05.40.1j
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I. INTRODUCTION

Stochastic forces can play a crucial role in influencing
deterministic kinetics. A representative example is stocha
resonance~SR! observed in metastable systems driven b
combination of periodic and random forcing@1–7#. SR mani-
fests itself in a significant enhancement of the system
sponse for a certain value of the noise strength. So far,
majority of the theoretical studies in this area have focu
on nonlinear systems with additive white noise. It was co
cluded that nonlinearity is an essential ingredient of SR si
in a linear system the input additive noise leads to onl
trivial decrease in the output signal-to-noise ratio~SNR!
while, in contrast, a dramatic improvement of the SNR c
be observed for a periodically modulated nonlinear poten

Recently, behavior similar to what is commonly ascrib
to SR has been found in a linear system subject to multi
cative colored noise@8–10#. A pronounced maximum of the
SNR as a function of the noise intensity was observed for
too high frequencies of the external periodic force as soo
noise correlation was introduced. Analytical solutions we
obtained for two different limits of the noise, namely, f
dichotomous noise@8,9# and for Gaussian noise@10#, and it
was suggested that noise multiplicativity and time correlat
are the necessary conditions for the SR to occur in a lin
system. Interestingly, the dependence of the SNR on
noise autocorrelation time also showed a nonmonotonic
havior.

Multiplicative fluctuations emerge naturally in a varie
of systems with ensuing applications in different areas ra
ing from physics to biology@11,12#. In fact, in a realistic
model one must always deal with various sources for fl
571063-651X/98/57~6!/6555~9!/$15.00
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tuations acting upon collective variables. Multiplicative pr
cesses have some common features with additive proce
and they also have a number of striking differences. Imp
tantly, the most probable values in a multiplicative proce
depend explicitly on the strength of the fluctuations, while
an additive process the dependence is very weak. For a
tiplicative process, the stability of the associated determin
tic problem does not guarantee the stability in the prese
of fluctuations. On the contrary, an additive stochastic p
cess is stable whenever the deterministic problem has a
bally stable steady state far away from the instability poi
Here lies a key to the explanation of the resonancelike p
nomena observed in a linear periodically driven system s
ject to multiplicative colored noise.

Consider an overdamped linear system described by
stochastic differential equation

ẋ~ t !52@a01j~ t !#x1A sin~Vt1w0!, ~1.1!

wherej(t) represents the noise with a vanishing mean an
certain time correlation.A, V, andw0 denote the amplitude
the frequency, and the initial phase of the external modu
tion, respectively. Even this simple problem has a numbe
important applications, such as fluctuating barrier crossing
chemistry @13#. By introducing the potentialU(x)5 1

2 @a0
1j(t)]x22Asin(Vt1w0)x, Eq. ~1.1! can be rewritten as
ẋ(t)52]U/]x. Thus the system evolution is governed b
the interplay between the fluctuating potential curvature d
to multiplicative noise and the periodic shift of the minimu
due to the sinusoidal signal. The evolution of the avera
^x(t)& can be described in terms of a sequence of no
generated effective potentials@10#. Only two potentials are
6555 © 1998 The American Physical Society
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involved in the case of dichotomous noise, while an infin
number of terms appears for Gaussian-type noise. Qua
tively, as the noise strength increases, the stability of
lowest most efficient term decreases, leading to the enha
ment of the output signal. At the same time, the weight
this potential decreases with increasing noise strength. T
two competing factors generate nonmonotonic behavio
the SNR. It should be emphasized that signal enhanceme
this model is due solely to a decreasing system stabi
typical of a multiplicative process. In the case of white noi
only one effective potential is involved. Thus, as the no
strength increases toward the marginal point of stability
monotonic increase of the output signal is observed.

So far we have tacitly assumed, together with Fulin´ski @8#
and Berdichevsky and Gitterman@9#, that the output signal is
given by the amplitude of the average^x(t)& at long times.
However, the system response is often defined in term
the experimentally observable power spectrum@2,6#. For a
stationary stochastic process, the Wiener-Khintchine th
rem holds and the spectral density is obtained as the Fo
transform of the autocorrelation function, which depends
the time difference only and thus, indeed, can be represe
by the average. However, stochastic processes with peri
modulation are essentially nonstationary stochastic proce
with the correlation function depending explicitly on tw
time arguments. The long-time amplitude of the avera
therefore, generally does not define the power spectr
Moreover, in many physical situations, the initial phasew0
of the modulation is unknown. It should thus be conside
as a random variable and the results have to be averaged
the phase distribution@6#.

The purpose of this paper is twofold. First of all, we w
present a solution to Eq.~1.1! for a general type of noise tha
bridges the Markovian two-state jump process and
Gaussian process and allows a straightforward further ge
alization to include noise asymmetry. Our second goal is
clarify the above-mentioned uncertainties of the previo
treatments. We will calculate the phase-averaged correla
function and thus show that the signal output defined as
spectral density corresponding to the periodic forcing f
quency exhibits no SR but simply a monotonic increase w
the noise strength due to a decreasing stability of the sys
We will also show that the resonancelike behavior of
system response as a function of the autocorrelation tim
retained.

II. PROPERTIES OF THE NOISE

The two-state jump process~often referred to as a di
chotomous process! and the Gaussian process respresent
opposite extremes in a sense that the former is characte
by two values of realization, whereas the latter is charac
ized by an infinite number of realizations. These two p
cesses have been widely used in stochastic modeling ma
due to their mathematical simplicity. The higher-order par
cumulants in the former and the cumulants in the latter v
ish identically, yielding simple expansion formulas. Seve
years ago, a general model was formulated for a compo
stochastic process that bridges the two-state jump and
Gaussian processes while retaining the simplicity of the
@14#. The composite process was introduced as a superp
a-
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tion of many two-state jump Markovian processes. In t
section we summarize the properties of such a compo
stochastic process, which will be required for our furth
discussion. Previously, the analysis was performed on
basis of the time-convolution expansion using projection
erators@14,15#. This method is very general, allowing evalu
ation of any functional of the noise. Here we choose a d
ferent approach, originally due to Kubo@16#, which operates
directly with the evolution equation.

Consider a stochastic process composed ofN independent
two-state jump processes, namely,

j~N!~ t !5 (
n51

N

jn~ t !, ~2.1!

where each constituent process has the stationary prope

^jn~ t !&50, ~2.2!

^jn~ t !jn8~ t8!&5dnn8D0
2exp~2ut2t8u/tc!, ~2.3!

Pst~D0!5Pst~2D0!5
1

2
. ~2.4!

The evolution equation

ẏ~ t !52j~N!~ t !y, ~2.5!

with the initial conditiony(0)51 for a total of 2N states, can
be transformed into a direct product ofN independent two-
state evolution equations

d

dtFy1~ t !

y2~ t !
G52D0F1 0

0 21GFy1~ t !

y2~ t !
G2

1

2tc
F 1 21

21 1 G
3Fy1~ t !

y2~ t !
G , ~2.6!

where y6[*yP6(y,t)dy and P6(y,t) is the probability
that the valuey in the state6 is realized at timet. The initial
condition consistent with the stationary properties of t
noise is

y1~0!5y2~0!5
1

2
. ~2.7!

Introducing

f~ t !5y1~ t !1y2~ t !, c~ t !5y1~ t !2y2~ t !, ~2.8!

we obtain for their Laplace transforms

f̂~s!5
~s1tc

21!f~0!2D0c~0!

s~s1tc
21!2D0

2
, ~2.9!

ĉ~s!5
sc~0!2D0f~0!

s~s1tc
21!2D0

2
. ~2.10!

The Laplace transform is defined by
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57 6557PERIODICALLY DRIVEN LINEAR SYSTEM WITH . . .
f̂ ~s!5E
0

`

f ~ t !e2stdt. ~2.11!

Taking into account the initial conditions and invertin
the Laplace transform in Eq.~2.9!, we finally arrive at

^y~ t !&5K expF2E
0

t

dt8j~N!~ t8!G L 5@f~ t !#N

5exp~2Nt/2tc!$cosh~ t/2btc!

1bsinh~ t/2btc!%
N

5 (
n50

N

Bn~N,m!exp~2knt !, ~2.12!

where

b5~114a2/N!21/2, a5Dtc , D25ND0
2 ,

~2.13!

m5~12b!/2, kn5~n2mN!/bt , ~2.14!

and

Bn~N,m!5S N

n Dmn~12m!N2n ~2.15!

is the binomial weight factor with the meanmN. We also
note the relationship

ḟ~ t !52D0c~ t ! ~2.16!

and thus

c~ t !52
2ab

AN
sinh~ t/2btc!exp~2t/2tc!, ~2.17!

which will be used later.
In the limit of N→`, the binomial coefficients tend to th

Poissonian weight factors

Bn~N,m!→Pn~a2![~a2n/n! !exp~2a2! ~2.18!

and Eq. ~2.12! reduces to the well-known result for th
Gaussian noise@16#

^y~ t !&5exp@x~ t !#5 (
n50

`

Pn~a2!exp~2knt !, ~2.19!

where

x~ t !5a2~ t/tc211e2t/tc!, ~2.20!

kn5~n2a2!/tc . ~2.21!

The above results can be generalized to asymmetric n
@17# with the values of realization

j656D0~16«! ~2.22!

and the stationary probabilities

Pst~j6!5~17«!/2. ~2.23!
se

It can be shown that both the noise amplitudes and the t
sition probabilities must be asymmetric for the avera
^jn(t)& to be zero. The stationary correlation function
given by

^jn~ t !jn8~ t8!&5dnn8D0
2~12«2!exp~2ut2t8u/tc!.

~2.24!

Again, the evolution equation can be transformed into a
rect product ofN independent two-state evolution equation
which now have the form

d

dtFy1~ t !

y2~ t !
G52D0F11« 0

0 211«
GFy1~ t !

y2~ t !
G

2
1

2tc
F 11« 211«

212« 12«
GFy1~ t !

y2~ t !
G ,

~2.25!

with the initial condition

y1~0!5
12«

2
, y2~0!5

11«

2
. ~2.26!

All the final results for the asymmetric noise will be exact
the same as above after we make the substitutions

tc→ t̃c , D0→D̃0 , ~2.27!

where

t̃c5
tc

112«D0tc
, D̃0

25D0
2~12«2!. ~2.28!

We also haveD25ND̃0
2.

Another quantity of our interest is the correlation functio

G~ t,t!5^g~ t,t!&5^y~ t !t~ t1t!&5K expF2E
0

t

dt1j~N!~ t1!

2E
0

t1t

dt2j~N!~ t2!G L . ~2.29!

By definition we have

]

]t
g~ t,t!52j~N!~ t1t!g~ t,t!. ~2.30!

We can calculate the correlation function for each of t
constituent two-state jump processes by considering two
cessive evolutions: the first overt described by Eq.~2.6!
with the amplitude of 2D0 instead ofD0 and the second ove
t described again by Eq.~2.6! but with the initial conditions
resulting from the first evolution, namely,

Ĝ̂~s,p!5
~p1tc

21!f̂~s,2D0!2D0ĉ~s,2D0!

p~p1tc!2D0
2

, ~2.31!

where the functionsf̂(s) andĉ(s) are defined by Eqs.~2.9!

and ~2.10!, respectively.Ĝ̂(s,p) denotes double Laplac
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transform overt andt. Inverting the Laplace transforms, w
finally obtain the expression for the correlation function
the composite process

G~ t,t!5@f~t,D0!f~ t,2D0!1c~t,D0!c~ t,2D0!#N,
~2.32!

where we introducedf(t,D0) and c(t,D0) to specify the
argumentD0 in the expressions forf(t) andc(t). Gener-
alization to asymmetric noise is straightforward, as descri
above for the averagêy(t)&.

In the limit of N→`, G(t,t) converges to the correlatio
function of the Gaussian noise

G~ t,t!5exp@2x~ t !12x~ t1t!2x~t!#, ~2.33!

wherex(t) is defined by Eq.~2.20!. This result can be ob
tained directly by performing the cumulant expansion in E
~2.29! and using the Gaussian property of the noise.

Closing this section, we present the expansion forG(t,t),
which will be used later,

G~ t,t!5(
$N%

He2k1te2k2t, ~2.34!

where$N% indicates that the summation is performed over
nj ( j 51, . . . ,4) from 0 to N under the restriction of
( j 51

4 nj5N,

H5N! )
j 51

4
~hj !

nj

nj !
, ~2.35!

hj5
1

4
@11b1~21! j #@11b2~21! j 2[ j /2]#

1
2

N
a2b1b2~21! [ j /2], ~2.36!

k i5
N

2tc
1

1

2bitc
(
j 51

4

nj~21! j 2[ j /2]~ i 21!,

bi5~114i 2a2/N!21/2, ~2.37!

where i 51,2 and@x# denotes the largest integer<x. Note
that H andk i are functions of allnj . In the limit of N→`,
Eq. ~2.34! reduces to

G~ t,t!5 (
k,l ,m50

`

Pklm~a2!~21!m2k1 le2k1mlte2k2klt,

~2.38!

where

Pklm~a2!5Pk~a2!Pl~a2!Pm~a2!, ~2.39!

k ikl5~k1 l 2 ia2!/tc . ~2.40!

III. STABILITY

Let us now consider the noisy relaxation described by
~1.1! with A50. It is well known that the stationary prob
f

d

.

ll

.

ability distribution for such a linear problem is not norma
izable @11#. The moments, however, can be stable at cert
parameter values. Different moments have different ran
of stability. The solution for the average value ofx(t) reads,

^x~ t !&5x0e2a0t^y~ t !&, ~3.1!

wherex05x(0) and^y(t)& was calculated in the precedin
section. With the help of the expansion in Eq.~2.12! we can
immediately obtain the stability condition for the first mo
ment

a0.mN/btc , ~3.2!

which can also be rewritten as

D2,a0~tc
211a0 /N!. ~3.3!

Clearly, the range of stability is wider for dichotomous noi
than for Gaussian noise.

Noise asymmetry effectively changes the autocorrelat
time. Therefore, the stability condition for asymmetric noi
is given by

D2,a0~ t̃c
211a0 /N!, ~3.4!

where t̃c was defined by Eq.~2.28! in terms ofD0 and tc .
Solving Eq. ~3.4! for the noise strengthD25ND0

2(12«2),
we obtain the inequality

D/a0,
«

@N~12«2!#1/2
1F 1

N~12«2!
1

1

a0tc
G 1/2

. ~3.5!

The effect of the noise asymmetry vanishes in the limit
N→`.

The stability conditions for the higher moments can
derived in a similar fashion. We have

^xm~ t !&5x0
me2ma0t@f~ t,mD0!#N ~3.6!

and consequently

D2,a0S 1

mtc
1

a0tc

N D . ~3.7!

For the asymmetric case we obtain

D/a0,
«

@N~12«2!#1/2
1F 1

N~12«2!
1

1

a0mt̃c
G 1/2

.

~3.8!

The stability range for the higher moments is considera
narrower than for the first moment, particularly for th
Gaussian noise. This is a very important thing to notice. T
moment stability conditions derived from Eq.~1.1! are the
same for arbitraryAÞ0. Thus the fact that different mo
ments have different ranges of stability for a periodica
driven linear system with multiplicative noise gives us t
first indication that the definitions of the output signal
terms of the long-time amplitude of the average and in ter
of the autocorrelation function~the power spectrum! are not
equivalent.
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IV. THE AVERAGE

Now that we have reviewed the properties of the mu
plicative noise in a linear system and derived the relev
moment stability conditions, we can focus on the solution
Eq. ~1.1!. The average of the solution is given by

^x~ t !&5x0e2a0tfN~ t !1AE
0

t

dt8sin@V~ t2t8!1w0#fN~ t8!.

~4.1!

Using the expansion~2.12! of the kernel, we can rewrite Eq
~4.1! in the form

^x~ t !&5 (
n50

N

Bn~N,m!exp~2bnt !F x01
AV

V21bn
2G

2Ccos~Vt1w1w0!, ~4.2!

where

bn5a01kn , C5A~C1
21C2

2!1/2; ~4.3!

C15 (
n50

N
bnBn~N,m!

V21bn
2

, C25 (
n50

N
VBn~N,m!

V21bn
2

; ~4.4!

w5arctan~C1 /C2!. ~4.5!

Our previously derived solution for the Gaussian noise@10#
is obtained in the limit ofN→`. Relevant to further consid
eration is the long-time behavior

^x~ t !&st52Ccos~Vt1w1w0! ~4.6!

under the stability condition of Eq.~3.3!.
The output SNR can be defined as

R5
a0C

a2A
. ~4.7!

Here we have modified the previous definition ofR by Fu-
liński @8#, i.e., R5C/AD2, in order to make it a dimension
less parameter. For colored noise, a pronounced maximu
the SNR well separated from the point of instability can
observed by changing the noise strength, as shown in Fi
This behavior is very similar to what is commonly ascrib
to SR. In fact, it was defined as SR by several authors@8–
10#. A qualitative explanation of this phenomenon is given
the Introduction. The underlying mechanism is the same
all N. Interestingly, for certain values of the input paramet
the maximum can disappear when the number of constitu
two-state jump processes is increased, as illustrated in
1~b!. A nonmonotonic behavior is also found for the depe
dence of the SNR on the autocorrelation time, as show
Fig. 2.

In Fig. 3 we analyze the range ofV andtc for which the
SR-like behavior occurs. The boundary condition for the
istence of the maximum is defined by

]R/]~D2!5]2R/]~D2!250. ~4.8!
-
t
f

of

1.

r
s
nt
ig.
-
in

-

The maximum appears for not too high frequenciesV of the
external periodic forcing immediately as soon as noise c
relation is introduced. No maximum is observed for t
white noise. Astc increases, the position of the maximu
shifts farther from the instability point; its amplitude firs
increases and then decreases before the maximum finally
appears. In the case of finiteN, there is a range ofV where
the maximum exists for alltc.0.

Let us consider the case ofN51 in more detail. We have

~C/A!25
V21~a011/tc!

2

~V21b0
2!~V21b1

2!
, ~4.9!

with

FIG. 1. Signal-to-noise ratioR5a0C/a2A as a function of~a!

D2 and ~b! D̃2 for ~a! a051, tc50.7, andV50.2 and~b! a051,

tc52, andV50.17, for different values ofN51,2,5, and`. D̃2

5D2/(11a0tc /N) maps the stability region onto@0,a0 /tc# for all
N.
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b0,15a01
1

2tc
7

1

2btc
. ~4.10!

This result has been obtained by Berdichevsky and Git
man ~BG! @9#. They considered the behavior of the norm
ized signal~i.e.,C/A, not the SNR! as a function of the noise
strength. The condition for the maximum is thenV2

5b0b1 or, as given by BG,

D25a0
21a0 /tc2V2. ~4.11!

This proves that upon increasing the external force freque
the maximum is shifted away from the instability point~i.e.,
D25a0

21a0 /tc) towards zero. The condition for the exis
tence of the maximum is thus

V,~a0
21a0 /tc!

1/2. ~4.12!

The position of the maximum in the dependence of
SNR on the noise strength is defined by]R/]D250 or

FIG. 2. Output signal amplitudeC/A as a function of the auto
correlation timetc for a051, D51, V50.7, and different values
of N51,2,5, and̀ .

FIG. 3. Existence boundaries, above which the maximum in
R vs D2 dependence disappears, fora051 and different values of
N51,3,10, and̀ . The dotted line shows the boundary value ofV
in the limit of tc→` for N51.
r-
-

cy

e

D2~b0b12V2!5~V21b0
2!~V21b1

2!. ~4.13!

The existence boundary is defined by the complemetary c
dition on the second derivative, i.e., Eq.~4.8!. We obtain for
the position

D25
3

4
~a0

21a0 /tc2V2!. ~4.14!

The relationship betweenV andtc is given by

~V4234a0
2V21a0

4!1
2a0

tc
~a0

2217V2!1
1

tc
2 ~a0

228V2!50.

~4.15!

Thus we obtain in the two important limits of small and lar
correlation times

V,a0/2A2 for tc→0, ~4.16!

V,a0A17212A2'a0 /A34 for tc→`. ~4.17!

It is difficult to derive a general expression for the max
mum existence boundary for arbitraryN. Here we shall dis-
cuss only the limit oftc→0. In this case,m'a2/N!1 and
thus we can take only two first terms in the series~4.4!. The
corresponding binomial coefficients areB0(N,m)'12mN
andB1(N,m)'mN. We have approximately

~C/A!2'@V21a0
222a0D2tc1D4tc

2#21. ~4.18!

Note thatD2;1/tc . Now we see that the maximum disap
pears atD2tc5

3
4 a0 and the range of existence is defined

V,a0/2A2 for tc→0 ~4.19!

for all N. The limit of tc→` is more difficult to analyze
analytically. Here we emphasize only that there is a fin
range ofV where the maximum exists even fortc→` pro-
vided N is finite.

The existence boundary of the maximum is sensitive
the noise asymmetry, as shown in Fig. 4. The effect is m
pronounced for smallN since the autocorrelation time can b

e

FIG. 4. Existence boundaries, above which the maximum in
R vs D2 dependence disappears, fora051, N53, and asymmetric
noise with«50,0.2,0.4,0.6, and 0.8.
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considerably altered in this case. On the other hand, as m
tioned above,t̃c→tc in the limit of N→`. It is possible to
find such conditions for finiteN where the noise asymmetr
leads to the appearance of a maximum that does not ap
in the corresponding symmetric system.

In this section we have shown that the output SNR,
fined in terms of the amplitude of^x(t)& at long times, ex-
hibits a maximum both as a function of the noise stren
and as a function of the autocorrelation time. This SR-l
behavior is observed for a general type of the noise
bridges the dichotomous and the Gaussian noise. Howev
is essential in the above derivations that the initial phasew0
of the external forcing is fixed. In many physical situation
w0 is unknown. It should thus be considered as a rand
variable and the resulting expression for^x(t)& has to be
averaged over the distribution ofw0 @6#. It is natural to as-
sume a uniform distribution of the initial phase. Averagi
over the uniform distribution ofw0 leads to the periodic term
in the expression for̂x(t)& as well as the output signal van
ishing identically. Only if a nonuniform distribution ofw0 is
somehow prepared in a system can the SR-like behavio
observed.

An important example of a system where the phase of
external modulation is correlated with the internal stocha
dynamics is found in biology. Experimental data on act
transport of ionic species in biomembranes under the in
ence of ac electric fields@18# has recently been interpreted
evidence of SR between the external field and the fluc
tions of the membrane potential@19#. Ion channel currents
under stimulation exhibit a strongly irregular charac
mostly of dichotomous type with the intensity of the noi
depending on the amplitude of the applied field. If pass
membrane permeability can be neglected, the ion cha
fluctuations and, consequently, the ion traffic start as soo
the external field is switched on. Therefore,w0 can be taken
as fixed~zero, without losing generality!. However, the ob-
served nonmonotonic behavior of the SNR as a function
the noise strength cannot be regarded as SR in convent
sense because the noise strength itself is totally governe
the external field in this case.

V. THE CORRELATION FUNCTION

The system response is often defined in terms of
power spectrum rather than the amplitude of the aver
@2,6#. For a stationary stochastic process, the Wien
Khintchine theorem holds and the spectral density is
tained as the Fourier transform of the autocorrelation fu
tion, which depends on the time difference only and thus
fact, can be represented by the average. However, stoch
processes with periodic modulation are essentially non
tionary with the correlation function depending explicitly o
two time arguments. Therefore, the long-time amplitude
the average generally does not define the power spect
The generalized Wiener-Khintchine theorem can be form
lated in terms of the phase-averaged autocorrelation func
@6#. For a uniform distribution of the initial phase, averagi
over the phase is equivalent to averaging over time. Thus
phase-averaged autocorrelation function depends only on
time difference. Whether the corresponding power spect
shows a nonmonotonic behavior as a function of the no
n-

ear

-

h
e
at
, it

,
m

be

e
ic

-

a-

r

e
el
as

f
nal
by

e
e

r-
-
-
n
stic
a-

f
m.
-
n

he
he
m
e

strength is what we have to find out.
All the relevant information is contained in the long-tim

correlation function@2#

K~ t,t!5 lim
t→`

^x~ t !x~ t1t!&. ~5.1!

The stability condition for the second moment applies. It
convenient to setw050 for the time being. We can alway
restore the initial phase in the end via a transformationVt
→Vt1w0, as we saw in Sec. IV. We have

K~ t,t!5A2E
0

t

dt1E
0

t1t

dt2 sin@V~ t2t1!#sin@V~ t1t2t2!#

3exp@2a0~ t11t2!#G~ t, ,ut12t2u!, ~5.2!

where t,5min$t1,t2% and G(t, ,ut12t2u) is defined by Eq.
~2.32!. It can be readily shown that other terms in^x(t)x(t
1t)& vanish at long times.

Using the expansion~2.34!, Eq. ~5.2! can be rewritten as

K~ t,t!5A2(
$N%

H@ f 1~ t,t!1 f 2~ t,t!#, ~5.3!

where the functionsf i(t,t) are defined to ensure time orde
ing,

f 1~ t,t!5E
0

t

dt1 sin@V~ t2t1!#exp@2b1t1#

3E
0

t1
dt2 sin@V~ t1t2t2!#exp@2~b22b1!t2#,

~5.4!

f 2~ t,t!5E
0

t

dt1 sin@V~ t2t1!#exp@2~b22b1!t1#

3E
t1

t1t

dt2 sin@V~ t1t2t2!#exp@2b1t2#,

~5.5!

where

b i5 ia01k i , i 51,2. ~5.6!

Note that sincenj<N, all b i are positive when the stability
condition is fulfilled.

The integrations are most conveniently performed us
Laplace transformation overt. We obtain forf̂ 1(s,t)

f̂ 1~s,t!5VImeıVt@s~s22ıV!~s1b12ıV!~s1b2!#21.
~5.7!

Only the residues ats50 ands52ıV contribute to the long-
time solution
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f 1~ t,t!5
b1cos~Vt!2Vsin~Vt!

2b2~b1
21V2!

2
b1b222V2

2~b1
21V2!~b2

214V2!
cos@V~2t1t!#

2
V~2b11b2!

2~b1
21V2!~b2

214V2!
sin@V~2t1t!#.

~5.8!

Similarly, for f̂ 2(s,t) we obtain

f̂ 2~s,t!5VImeıVt@s~s22ıV!~b11ıV!~s1b2!#21

2Ve2b1tIm@~b11ıV!$~s1b1!21V2%

3~s1b2!#21. ~5.9!

The second term vanishes at long times. In the first te
only the residues ats50 ands52ıV contribute to the long-
time solution. The final expression forf 2(t,t) is almost the
same as that forf 1(t,t), except that the minus sign i
changed to plus in the numerator of the firstt-independent
term. We obtain finally

K~ t,t!5C0 cos~Vt!2C1 cos~2Vt1Vt1w1!,
~5.10!

where

C05A2(
$N%

Hb1

b2~b1
21V2!

, ~5.11!

C15~C11
2 1C12

2 !1/2, ~5.12!

C115A2(
$N%

HV~2b11b2!

~b1
21V2!~b2

214V2!
, ~5.13!

C125A2(
$N%

H~b1b222V2!

~b1
21V2!~b2

214V2!
, ~5.14!

w152arctan~C11/C12!. ~5.15!

The expression for the long-time correlation function
the limit of N→` can be derived in a similar way using th
expansion~2.38!. The general form of Eq.~5.10! still ap-
plies, but the coefficients should be modified. For instan
we obtain forC0

C05A2 (
k,l ,m50

`

Pklm~a2!
b1ml~21!m2k1 l

b2kl~b1ml
2 1V2!

, ~5.16!

whereb ikl5 ia01k ikl .
The initial phase of the periodic external forcing contri

utes additively to the phase of the second term in Eq.~5.10!,
i.e., 2Vt→2Vt12w0. Thus, averaging over the uniform
distribution ofw0 leaves only the first term in the expressio
for the long-time correlation function. This term correspon
to a kink in the power spectrum at the forcing frequency.
contrast to the case of additive noise@2#, there is no back-
,

e,

s

ground band for multiplicative noise. The amplitude of t
output signalC0 simply diverges upon approaching the i
stability point with increasing noise strength because ofb2
in denominator; so does the SNR, defined asR5
C0(a0 /aA)2, as shown in Fig. 5. No SR is observed for a
parameter settings. However, when the autocorrelation t
of the noise is varied instead of the intensity, the outp
signal goes through a maximum, as illustrated in Fig. 6. T
resonancelike behavior induced by correlated noise has
cently been predicted for a number of systems, even in
absence of the external periodic force@20#. Under the condi-
tion of

FIG. 5. Output signal-to-noise ratio, defined in terms of t
amplitude of the long-time phase-averaged correlation functionR

5C0(a0 /aA)2, as a function of the input noise strengthD̃2 for
a051, tc51, V50.15, and different values ofN51,2,5, and`.

D̃25D2/(1/21a0tc /N) maps the stability region onto@0,a0 /tc#
for all N.

FIG. 6. Output signal amplitudeC0 /A2 as a function of the
autocorrelation timetc for a051, D50.5,V51, and different val-
ues ofN51,3,5, and̀ . The dotted line shows the instability poin
tc* 5a0/2D2 for the Gaussian noise.
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D2<a0
2/N, ~5.17!

the system is stable for alltc and the maximum is mos
clearly observed. Otherwise, there is a marginal point attc*
5 1

2 a0(D22a0
2/N)21. The signal diverges upon approachin

this point. As a result, the maximum can disappear.
However difficult it might seem to practically realize th

variation of tc , it is not impossible. Zwanzig’s model fo
passage through a fluctuating bottleneck is an example@21#.
In describing ligand binding by a simple first-order ra
equation, Zwanzig assumed that the rate constant depen
the radius of the bottleneck, which in turn fluctuates beca
of thermal noise and its time dependence is given b
Langevin equation. The characteristic relaxation time of
radius of the bottleneck is expected to be proportional to
solvent viscosity and can thus be controlled. The relaxa
time in Zwanzig’s model corresponds to the noise autoc
relation timetc in this paper.

VI. CONCLUDING REMARKS

It has been argued recently that stochastic resonance
occur in a linear system driven by periodic external forci
provided the input noise is multiplicative and correlate
Starting with the Langevin equation, it was found that t
amplitude of the average at long times, defined as the ou
signal, shows a pronounced maximum both as a function
the noise strength and as a function of the correlation t
for not too high frequencies of the external forcing. In th
paper we have proved that this resonant behavior is q
general and occurs for any type of the noise ranging from
,

o

v.
on
e
a
e
e
n
r-

an

.

ut
of
e

te
e

two-state jump process to the Gaussian process. Previo
only these two limiting cases had been considered. Here
have described a generalized composite stochastic pro
defined as a suporposition ofN independent two-state jum
processes, which bridges the two limits.

Although the results obtained seem to be very exciti
we have to admit that the observed resonance is realiz
experimentally only if a nonuniform distribution of the initia
phasew0 of the external periodic modulation is someho
prepared in a system. In many physical situations, howe
the external periodic forcing has a random, uniformly distr
uted initial phase. Averaging over the uniform distribution
w0 leads to the output signal, defined as the amplitude
^x(t)& at long times, vanishing identically. Moreover, th
system response is often defined in the literature in term
the experimentally measurable power spectrum rather t
the amplitude of the average. The output signal is then gi
by the spectral density corresponding to the frequency of
external forcing. We have calculated the long-time corre
tion function. According to the generalized Wiene
Khintchine theorem, the Fourier transform of the pha
averaged correlation function gives the power spectrum
appears that the output signal simply diverges with incre
ing noise strength upon approaching the instability po
which is in fact different from the instability point corre
sponding to the first moment. No SR, in a convention
sense, is observed in a linear system for any parameter
tings. However, a very interesting phenomenon is still
tained, namely, the resonancelike behavior as a function
the noise autocorrelation time.
:
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